TheServerSide <>|
JAVA SYMPOSIUM >

Java Specialists in Action

Dr Heinz Kabutz

The Java Specialists’ Newsletter
http:/ /www.javaspecialists.co.za

Dr Heinz Kabutz http://www.javaspecialists.co.za

TheServerSide 4>|
2

JAVA SYMPOSIUM

Java Specialists in Action

Using dynamic proxies to write less code

Dr Heinz Kabutz http://www.javaspecialists.co.za

TheServerSide <>|
|~

JAVA SYMPOSIUM

Background

Heinz Kabutz

e The Java Specialists’ Newsletter
= 20 000 readers in 111 countries

e Sun Java Champion

e Java programmer since 1997
= Worked on large Java systems
500 000 -1 000 000 LOC
e Taught Java to hundreds of developers
» Java Patterns Course
= Java 5 Delta Course
= http://javaspecialists.co.za/courses

Dr Heinz Kabutz http://www.javaspecialists.co.za

TheServerSide
JAVA SYMPOSIUM

RS
|~

java training B Standsi

Java Newsletter

[Java Courses Inhouse Courses Java Trainers 10 Good Reasons

Make Enquiry |

Java Specialists
newsletter |

Subscribe to the
newsletter

click

Welcome to The Java™ Specialists' Newsletter

Strategy Pattern with Generics [Issue 123] The Strategy Pattern is elegant in its simplicity. With this
pattern, we should try to convert intrinsic state to extrinsic, to allow sharing of strategy objects. It gets tricky
when each strategy object needs a different set of information in order to do its work. In this newsletter, we
look at how we can use Java 5 Generics to pass the correct subtype of the context into each strategy object.

Java Courses

Imagine being trained in Java™ and object orientation by the authors of The Java™ Specialists' Newsletter and
Java™ Champion Dr Heinz Kabutz. To add to our inhouse Java courses we are proud to announce the
launch of our Java Courses on Crete with it's beautiful beaches, warm weather and great local food.

Latest Java News

Code Java at the speed of light. Modern IDEs have revolutionised the way in which we are able to churn out
code. Sadly most programmers are held back... Dr Heinz Kabutz was honoured to be invited to present two
sessions at TheServerSide Java Symposium from the 23rd to the 25th of March 2006 at Caesar's Palace in
Las Vegas.

Newsletter Archive
Over 120 issues archived by date and topic. You are welcome to join our community of 20,000 java
programmers in over 100 countries who receive The Java Specialists’ Newsletter every month.

"Dr Heinz Max Kabutz publishes an Advanced Java newsletter.

Hot for the uninitiated, but | find something fascinating in every issue.”
Bruce Eckel, Author of Thinking in Java

. Courselinks

Java Intro
Tiger
Patterns
Performance
Schedules
Inhouse

w

MPION

#1 Java Champ
in Africa

Subscriber
Courtries

TheServerSide
JAVA SYMPOSIUM

Subscribe to the Newsletter

Find out about our java courses Site Map

Site Design by Catch22 Marketing

java nevdetter archive

java performance course

java courses student comments java standard course java 5 delta course

java for managers delphi patterns java champion ruby courses

Google Site Map

java trainers

Dr Heinz Kabutz

:llIwww.javaspecialists.co.za

TheServerSide “}'
>

JAVA SYMPOSIUM

Questions

Please please please please ask questions!

There are some stupid questions

e They are the ones you didn’t ask

e Once you’ve asked them, they are not stupid anymore

Assume that if you didn’t understand something that it
was my fault

The more you ask, the more interesting the talk will be

Dr Heinz Kabutz http://www.javaspecialists.co.za

TheServerSide <>|
e

JAVA SYMPOSIUM

Introduction to Topic

In this talk, we will look at:

e Design Patterns
e Dynamic Proxies in Java

o Soft, Weak and Strong references

For additional resources, or to find out how
“hi there”.equals(“cheers!”) == true, visit:
e The Java™ Specialists’ Newsletter

o http://www.javaspecialists.co.za

Dr Heinz Kabutz http://www.javaspecialists.co.za

TheServerSide “}'
>

JAVA SYMPOSIUM

Design Patterns

Mainstream of OO landscape, offering us:

e View into brains of OO experts

e Quicker understanding of
existing designs
= e.g. Visitor pattern used by
Annotation Processing Tool

e Improved communication
between developers

e Readjusting of “thinking mistakes” by developers

Dr Heinz Kabutz http://www.javaspecialists.co.za

TheServerSide <>|
2

JAVA SYMPOSIUM

Vintage Wines

Design Patterns are like good red wine

e You cannot appreciate them at first

e As you study them you learn the difference between plonk and
vintage, or bad and good designs

e As you become a connoisseur you experience the various textures
you didn’t notice before

Warning: Once you are hooked, you will no longer be
satisfied with inferior designs

Dr Heinz Kabutz http://www.javaspecialists.co.za

TheServerSide <>|
2

JAVA SYMPOSIUM

Proxy Pattern

Intent [GoF95]

e Provide a surrogate or
placeholder for another
object to control access
to it.

Dr Heinz Kabutz http://www.javaspecialists.co.za

TheServerSide <>|
2

JAVA SYMPOSIUM

Proxy Structure

interface

‘ Client I = Subject

+request() . vold

RealSubject Proxy
-tealSubjectRealSubject

+request()void

+request()void

Dr Heinz Kabutz http://www.javaspecialists.co.za

TheServerSide ‘4}'
e

JAVA SYMPOSIUM

We will focus

T f Proxies in GoF .
ypes of Proxies in Go on this type

Virtual Proxy

e creates expensive objects on demand

Remote Proxy

e provides a local representation for an object in a different address
space

Protection Proxy

e controls access to original object

Dr Heinz Kabutz http://www.javaspecialists.co.za

TheServerSide <>|
|~

JAVA SYMPOSIUM

Approaches to writing proxies

Handcoded

e Only for the very brave ... or foolish

Autogenerated code

e RMI stubs and skeletons created by rmic

Dynamic proxies
e Available since JDK 1.3
e Dynamically creates a new class at runtime

e Flexible and easy to use

Dr Heinz Kabutz http://www.javaspecialists.co.za

TheServerSide <>|
|~

JAVA SYMPOSIUM

Model for example

Company 1 interface
makehoney = MoralFibre
damageEnvironment actSociallyResponsibly
hecomeFocusOmMiediaAttention empowerEmployees

cleahupEnvironment

Company creates
moral fibre

(13 bk
on demand ‘MoralFibrelmpl |{ MoralFibreProxyl

Dr Heinz Kabutz http://www.javaspecialists.co.za

TheServerSide <>|
|~

JAVA SYMPOSIUM

public class Company {

/] ...

private final MoralFibre moralFibre; // set in constructor

public void becomeFocusOfMediaAttention() {
System.out.printin("Look how good we are...");

cash —= moralFibre.actSociallyResponsibly();
cash —= moralFibre.cleanupEnvironment();
cash —= moralFibre.empowerEmployees();

}

@Override

public String toString() {
Formatter formatter = new Formatter();
formatter.format("%s has $ %.2f", name, cash);
return formatter.toString();

}
}

Dr Heinz Kabutz http://www.javaspecialists.co.za

TheServerSide <>|
|~

JAVA SYMPOSIUM

public class MoralFibrelmpl implements MoralFibre {
/| very expensive to create moral fibre!
private byte[] costOfMoralFibre = new byte[900 * 1000];

{ System.out.printIn("Moral Fibre Created!"); }

/| AIDS orphans

public double actSociallyResponsibly() {
return costOfMoralFibre.length / 3;

}

/| shares to employees

public double empowerEmployees() {
return costOfMoralFibre.length / 3;

}

// oiled sea birds

public double cleanupEnvironment() {
return costOfMoralFibre.length / 3;

}
}

A LAY

Dr Heinz Kabutz http://www.javaspecialists.co.za

TheServerSide <>|
|~

JAVA SYMPOSIUM

Handcoded Proxy

Usually results in a lot of effort

Good programmers have to be lazy

e DRY principle
= Don’t repeat yourself

Shown just for illustration

Dr Heinz Kabutz http://www.javaspecialists.co.za

TheServerSide <>|
|~

JAVA SYMPOSIUM

public class MoralFibreProxy implements MoralFibre {
private MoralFibrelmpl realSubject;
private MoralFibre realSubject() {
if (realSubject == null) { // need some synchronization
realSubject = new MoralFibrelmpl();

}

return realSubject;
}

public double actSociallyResponsibly() {
return realSubject().actSociallyResponsibly();

}

public double empowerEmployees() {
return realSubject().empowerEmployees();

}

public double cleanupEnvironment() {
return realSubject().cleanupEnvironment();

}
}

Dr Heinz Kabutz http://www.javaspecialists.co.za

TheServerSide <>|
e

JAVA SYMPOSIUM

import static java.util.concurrent.TimeUnit

public class WorldMarketO {

.SECONDS;

public static void main(String[] args) throws Exception {
Company maxsol = new Company("Maximum Solutions”,

1000 * 1000, new MoralFibreProxy());
SECONDS.sleep(2); // better than Thread

.Sleep(2000);

maxsol.makeMoney();
System.out.printin(maxsol);
SECONDS.sleep(2);
maxsol.damageEnvironment();
System.out.printin(maxsol);
SECONDS.sleep(2);

Oh goodie!

Maximum Solutions has $ 2000000.00
Oops, sorry about that oilspill...
Maximum Solutions has $ 8000000.00
Look how good we are...

Moral Fibre Created!

Maximum Solutions has $ 7100000.00

maxsol.becomeFocusOfMediaAttention();
System.out.printin(maxsol);

Dr Heinz Kabutz http://www.javaspecialists.co.za

TheServerSide <>|
e

JAVA SYMPOSIUM

Dynamic Proxies

Handcoded proxy flawed

e Previous approach broken — what if toString() is called?

e Fixing synchronization problems would need to be done everywhere

Allows you to write a method call handler

e Is invoked every time any method is called on interface

Easy to use

e But, seriously underused feature of Java

Dr Heinz Kabutz http://www.javaspecialists.co.za

TheServerSide “}'
>

JAVA SYMPOSIUM

Strong, Soft and Weak References

Java 1.2 introduced concept of soft and weak
references

Weak reference is released when no strong reference is
pointing to the object

Soft reference can be released, but will typically only
be released when memory is low
e Works correctly since JDK 1.4

Dr Heinz Kabutz http://www.javaspecialists.co.za

TheServerSide <>|
|~

JAVA SYMPOSIUM

Object Adapter Pattern — Pointers

References are not transparent

We make them more transparent by defining a Pointer
interface
e Can then be Strong, Weak or Soft

public interface Pointer<T> {
void set(T t);
T get();

}

Dr Heinz Kabutz http://www.javaspecialists.co.za

TheServerSide <>|
e

JAVA SYMPOSIUM

public class StrongPointer<T> implements Pointer<T> {
private T t;
public void set(T t) { this.t = t; }
public T get() { return t; }

}

import java.lang.ref.Reference;

public abstract class RefPointer<T> implements Pointer<T> {
private Reference<T> ref;
protected void set(Reference<T> ref) { this.ref = ref; }
public T get() { return ref == null ? null : ref.get(); }

}

import java.lang.ref.SoftReference;
public class SoftPointer<T> extends RefPointer<T> {
public void set(T t) { set(new SoftReference<T>(t)); }

}

import java.lang.ref.WeakReference;
public class WeakPointer<T> extends RefPointer<T> {
public void set(T t) { set(new WeakReference<T>(t)); }

}

Dr Heinz Kabutz http://www.javaspecialists.co.za

TheServerSide ‘4}'
e

JAVA SYMPOSIUM

Using Turbocharged enums

We want to define enum for these pointers

But, we don’t want to use switch

e Switch and multi-conditional if-else are anti-OO

o Rather use inheritance, strategy or state patterns

Enums allow us to define abstract methods

e We implement these in the enum values themselves

Dr Heinz Kabutz http://www.javaspecialists.co.za

TheServerSide @l
2

JAVA SYMPOSIUM

public enum PointerType {
STRONG { // these are anonymous inner classes
public <T> Pointer<T> make() { // note the generics here
return new StrongPointer<T>();

}

}l
WEAK {

public <T> Pointer<T> make() {
return new WeakPointer<T>();

}

}l
SOFT {

public <T> Pointer<T> make() {
return new SoftPointer<T>();

}
};

public abstract <T> Pointer<T> make();

}

Dr Heinz Kabutz http://www.javaspecialists.co.za

TheServerSide “}'
>

JAVA SYMPOSIUM

PointerTest Example

private static void test(PointerType type) {
System.out.printin("Testing " + type + " Pointer");
MyObject obj = new MyObject(type.toString());
Pointer<MyObject> pointer = type.make();
pointer.set(obj);
System.out.printin(pointer.get());
obj = null;
forceGC();
System.out.printin(pointer.get());
forceOOME();
System.out.printin(pointer.get());
System.out.printin();

Dr Heinz Kabutz http://www.javaspecialists.co.za

TheServerSide “}'
>

JAVA SYMPOSIUM

Danger — References

References put additional strain on GC
Only use with large objects

Memory space preserving measure

e But can severely impact on performance

Even empty finalize() methods can cause
OutOfMemoryError

e Additional step in GC that runs in separate thread

Dr Heinz Kabutz http://www.javaspecialists.co.za

TheServerSide ‘4}'
e

JAVA SYMPOSIUM

Defining a Dynamic Proxy

We make a new instance of an interface class using
java.lang.reflect.Proxy:

Object o = java.lang.reflect.Proxy.newProxylnstance(
Thread.currentThread().getContextClassLoader(),
new Class[]{ interface to implement },
implementation of java.lang.reflect.InvocationHandler
);

The result is an instance of interface to implement

Dr Heinz Kabutz http://www.javaspecialists.co.za

TheServerSide <>|
e

JAVA SYMPOSIUM

import java.lang.reflect.*;

public class VirtualProxy<T> implements InvocationHandler {
private final Pointer<T> realSubjectPointer;
private final Object[] constrParams;
private final Constructor<? extends T> subjectConstructor;

public VirtualProxy(Class<? extends T> realSubjectClass,
Class[] constrParamTypes,
Object[] constrParams,
PointerType pointerType) {
try {
subjectConstructor = realSubjectClass.
getConstructor(constrParamTypes);
realSubjectPointer = pointerType.make();
} catch (NoSuchMethodException e) {
throw new lllegalArgumentException(e);

}

this.constrParams = constrParams;

}

Dr Heinz Kabutz http://www.javaspecialists.co.za

TheServerSide ‘4}'
e

JAVA SYMPOSIUM

public Object invoke(Object proxy, Method method,
Object[] args) throws Throwable {
T realSubject;
synchronized (this) {
realSubject = realSubjectPointer.get();
if (realSubject == null) {
realSubject = subjectConstructor.newlnstance(
constrParams);
realSubjectPointer.set(realSubject);

}
}

return method.invoke(realSubject, args);

}
}

Whenever any method is invoked on the proxy object, it
gets the real subject from the Pointer and creates it if
necessary

Dr Heinz Kabutz http://www.javaspecialists.co.za

TheServerSide “}'
>

JAVA SYMPOSIUM

A word about synchronization

We need to synchronize whenever we check the value
of the pointer

o Otherwise several realSubject objects could be created
e However, no one else will have a pointer to this object

e Thus, it is fairly safe to synchronize on “this”

Double-checked locking idiom was broken pre-Java 5

* It now works if you make the field volatile

o Easier to get synchronized correct than volatile

Dr Heinz Kabutz http://www.javaspecialists.co.za

TheServerSide <>|
|~

JAVA SYMPOSIUM

Proxy Factory

To simplify our client code, we define a Proxy Factory:

@SuppressWarnings("unchecked") // be very careful of using this!
public class ProxyFactory {
public static <T> T virtualProxy(Class<T> subjectintf) { ... }

public static <T> T virtualProxy(Class<T> subjectintf,
PointerType type) { ... }

public static <T> T virtualProxy(Class<T> subjectintf,
Class<? extends T> realSubjectClass, PointerType type) { ... }

public static <T> T virtualProxy(Class<T> subjectintf,
Class<? extends T> realSubjectClass,
Class[] constrParamTypes,
Object[] constrParams, PointerType type) { ... }

}

Dr Heinz Kabutz http://www.javaspecialists.co.za

TheServerSide <>|
|~

JAVA SYMPOSIUM

Proxy Factory

We will just show the main ProxyFactory method:

e The other methods send default values to this one

public class ProxyFactory {
public static <T> T virtualProxy(Class<T> subjectinterface,

Class<? extends T> realSubjectClass,

Class[] constrParamTypes,

Object[] constrParams, PointerType type) {

return (T) Proxy.newProxylnstance(
Thread.currentThread().getContextClassLoader(),
new Class[]{subjectinterface},
new VirtualProxy<T>(realSubjectClass,
constrParamTypes, constrParams, type));

Dr Heinz Kabutz http://www.javaspecialists.co.za

TheServerSide “}'
>

JAVA SYMPOSIUM

import static com.maxoft.proxy.ProxyFactory.virtualProxy;
import static java.util.concurrent.TimeUnit.SECONDS;

public class WorldMarket1 {
public static void main(String[] args) throws Exception {
Company maxsol = new Company("Maximum Solutions”,
1000 * 1000, virtualProxy(MoralFibre.class));
SECONDS.sleep(2);
maxsol.makeMoney();
System.out.printin(maxsol);

Oh goodie!
Maximum Solutions has $ 2000000.00
Oops, sorry about that oilspill...

SECONDS.sleep(2); Maximum Solutions has $ 8000000.00
maxsol.damageEnvironment(); Look how good we are...
System.out.printin(maxsol); Moral Fibre Created!
SECONDS.sleep(2); Maximum Solutions has $ 7100000.00

maxsol.becomeFocusOfMediaAttention();
System.out.printin(maxsol);

Dr Heinz Kabutz http://www.javaspecialists.co.za

TheServerSide ‘4}'
e

JAVA SYMPOSIUM

Weak Pointer is cleared when we don’t have a strong
ref

Company maxsol = new Company("Maximum Solutions”, 1000000,
virtualProxy(MoralFibre.class, WEAK));

SECONDS.sleep(2);

maxsol.damageEnvironment();

maxsol.becomeFocusOfMediaAttention();

Oops, sorry about that oilspill...
Look how good we are...
Moral Fibre Created!

Oops, sorry about that oilspill...
/] short term memory... Look how good we are...

System.gc(), Moral Fibre Created!
SECONDS.sleep(2);

maxsol.damageEnvironment();
maxsol.becomeFocusOfMediaAttention();

Dr Heinz Kabutz http://www.javaspecialists.co.za

TheServerSide ‘4}'
e

JAVA SYMPOSIUM

Soft Pointer more appropriate

Company maxsol = new Company("Maximum Solutions”, 1000000,

virtualProxy(MoralFibre.class, SOFT));
SECONDS.sleep(2);
maxsol.damageEnvironment();
maxsol.becomeFocusOfMediaAttention();

System.gc(); // ignores soft pointer
SECONDS.sleep(2);
maxsol.damageEnvironment();
maxsol.becomeFocusOfMediaAttention();

forceOOME(); // clears soft pointer
SECONDS.sleep(2);
maxsol.damageEnvironment();
maxsol.becomeFocusOfMediaAttention();
}
private static void forceOOME() {
try {byte[] b = new byte[1000000000];}

Oops, sorry about that oilspill...

Look how good we are...
Moral Fibre Created!

Oops, sorry about that oilspill...

Look how good we are...
java.lang.OutOfMemoryError:
Java heap space

Oops, sorry about that oilspill...

Look how good we are...
Moral Fibre Created!

Dr Heinz Kabutz http://www.javaspecialists.co.za

JAVA SYMPOSIUM

TheServerSide <>|
|~

Performance of Dynamic Proxies

— 933 |
[1 Method calls (100000/s)
[] Standard Deviation
275
105
6 23 2 - 3 L
2 : ? 3 g
& o o o)
o T 1) = Q
Z © o 2 £
T € = ©
: 3
& S A
2 e

Dr Heinz Kabutz http://www.javaspecialists.co.za

TheServerSide “}'
>

JAVA SYMPOSIUM

Analysis of Performance Results

Always look at performance in real-life context

e In your system, how often does a method get called per second?

e What contention are you trying to solve — CPU, 10 or memory?
* Probably the wrong solution for CPU bound contention

Big deviation for “No Proxy” — probably due to HotSpot
compiler inlining method call.

Dr Heinz Kabutz http://www.javaspecialists.co.za

TheServerSide ‘4}'
e

JAVA SYMPOSIUM

Virtual Proxy Gotchas

Be careful how you implement equals()

o Should always be symmetric (from JavaDocs):
* For any non-null reference values x and y, x.equals(y) should

return true if and only if y.equals(x) returns true

Exceptions

e General problem with proxies

= | ocal interfaces vs. remote interfaces in EJB

S,
<}
“'1
iy
P

e Were checked exceptions invented on April 1st ?

Dr Heinz Kabutz http://www.javaspecialists.co.za

TheServerSide “}'
>

JAVA SYMPOSIUM

Checkpoint

We’ve looked at the concept of a Virtual Proxy based
on the GoF pattern

We have seen how to implement this with dynamic
proxies (since JDK 1.3)

We have also looked at Soft and Weak refs

Lastly, we were unsurprised that dynamic proxy
performs worse than handcoded proxy

Dr Heinz Kabutz http://lwww.javaspecialists.co.za

TheServerSide ‘4}'
e

JAVA SYMPOSIUM

Further uses of Dynamic Proxy

Protection Proxy

e Only route the call when caller has the correct security context
= Similar to the “Personal Assistant” pattern

Dynamic Decorator or Filter

e We can add functions dynamically to an object
o See http:/ljavaspecialists.co.za/archive/newsletter.do?issue=034

e Disclaimer: | tried to read it today, and don’t understand it either

Dr Heinz Kabutz http://www.javaspecialists.co.za

TheServerSide ‘4}'
e

JAVA SYMPOSIUM

Dynamic Object Adapter

Based on Adapter pattern by GoF

Plain Object Adapter has some drawbacks:

e Sometimes you want to adapt an interface, but only want to override
some methods

o E.g.java.sgl.Connection

Structurally, the patterns Adapter, Proxy, Decorator and
Composite are almost identical

Dr Heinz Kabutz http://www.javaspecialists.co.za

JAVA SYMPOSIUM

TheServerSide <>|
2

Object Adapter Structure (GoF)

interface Adaptee
Jarget

+specificRequestd:void

+request() .void

I adaptee
|

Adapter
-adaptee Adaptee
+Adapter(adaptee:Adaptee)
+requestvoid

adaptee.specificRequest()

Dr Heinz Kabutz http://www.javaspecialists.co.za

TheServerSide <>|
|~

JAVA SYMPOSIUM

We delegate the call if the adapter has a method with this
signature

Objects adaptee and adapter can be of any type

public Object invoke(Object proxy, Method method,

Object[] args) throws Throwable {
try {
/] find out if the adapter has this method
Method other = adaptedMethods.get(// only declared methods
new Methodldentifier(method));
if (other !=null) { // yes it has
return other.invoke(adapter, args);
}else{ // no it does not
return method.invoke(adaptee, args);
}
} catch (InvocationTargetException e) {
throw e.getTargetException();
}
}

Dr Heinz Kabutz http://www.javaspecialists.co.za

TheServerSide <>|
|~

JAVA SYMPOSIUM

The ProxyFactory now gets a new method:

public class ProxyFactory {

public static <T> T adapt(Object adaptee,
Class<T> target,
Object adapter) {
return (T) Proxy.newProxylnstance(
Thread.currentThread().getContextClassLoader(),
new Class[l{target},
new DynamicObjectAdapter<T>(adapter, adaptee));

Dr Heinz Kabutz http://www.javaspecialists.co.za

TheServerSide <>|
|~

JAVA SYMPOSIUM

Client can now adapt interfaces very easily

import static com.maxoft.proxy.ProxyFactory.*;

/] ...

Connection con = DriverManager.getConnection("...");
Connection con2 = adapt(con, Connection.class,
new Object() {
public void close() {
System.out.printin("No, do not close connection");

}
D;

For additional examples of this technique, see

o http://javaspecialists.co.za/archive/newsletter.do?issue=108

Dr Heinz Kabutz http://www.javaspecialists.co.za

TheServerSide <>|
|~

JAVA SYMPOSIUM

Benefits of Dynamic Proxies

Write once, use everywhere
Single point of change

Elegant coding on the client

e Esp. combined with static imports & generics

Slight performance overhead

o But view that in context of application

Dr Heinz Kabutz http://www.javaspecialists.co.za

TheServerSide @l
2

JAVA SYMPOSIUM

Demo

Short demonstration using Dynamic Virtual Proxy for
new interface

Dr Heinz Kabutz http://www.javaspecialists.co.za

TheServerSide <>|
|~

JAVA SYMPOSIUM

Conclusion

Thank you very much for listening to me ©
In my experience, Dynamic Proxies are easy to use

Look for applications where they are appropriate

Dr Heinz Kabutz http://www.javaspecialists.co.za

